Dark-field transmission electron microscopy and the Debye-Waller factor of graphene.
نویسندگان
چکیده
Graphene's structure bears on both the material's electronic properties and fundamental questions about long range order in two-dimensional crystals. We present an analytic calculation of selected area electron diffraction from multi-layer graphene and compare it with data from samples prepared by chemical vapor deposition and mechanical exfoliation. A single layer scatters only 0.5% of the incident electrons, so this kinematical calculation can be considered reliable for five or fewer layers. Dark-field transmission electron micrographs of multi-layer graphene illustrate how knowledge of the diffraction peak intensities can be applied for rapid mapping of thickness, stacking, and grain boundaries. The diffraction peak intensities also depend on the mean-square displacement of atoms from their ideal lattice locations, which is parameterized by a Debye-Waller factor. We measure the Debye-Waller factor of a suspended monolayer of exfoliated graphene and find a result consistent with an estimate based on the Debye model. For laboratory-scale graphene samples, finite size effects are sufficient to stabilize the graphene lattice against melting, indicating that ripples in the third dimension are not necessary.
منابع مشابه
3D characterization of CdSe nanoparticles attached to carbon nanotubes
The crystallographic structure of CdSe nanoparticles attached to carbon nanotubes has been elucidated by means of high resolution transmission electron microscopy and high angle annular dark field scanning transmission electron microscopy tomography. CdSe rod-like nanoparticles, grown in solution together with carbon nanotubes, undergo a morphological transformation and become attached to the c...
متن کاملInteraction of Metals with Suspended Graphene Observed by Transmission Electron Microscopy.
In this Perspective, we present an overview of how different metals interface with suspended graphene, providing a closer look into the metal-graphene interaction by employing high-resolution transmission electron microscopy, especially using high-angle dark field imaging. All studied metals favor sites on the omnipresent hydrocarbon surface contamination rather than on the clean graphene surfa...
متن کاملPreparation and Characterization of Reduced Graphene Oxide Doped in Sol-Gel Derived Silica for Application in Electrochemical Double-Layer Capacitors
In this study, a new graphene ceramic composite (GCC) was prepared based on the reduced grapheneoxide (rGO) doped in sol-gel derived silica. The GCC was prepared by dispersing rGO nanosheets intothe sol-gel precursors containing methyl triethoxysilane, methanol and hydrochloric acid solution.During an acid catalyzed hydrolyze reaction and gelation proc...
متن کاملMetal-graphene interaction studied via atomic resolution scanning transmission electron microscopy.
Distributions and atomic sites of transition metals and gold on suspended graphene were investigated via high-resolution scanning transmission electron microscopy, especially using atomic resolution high angle dark field imaging. All metals, albeit as singular atoms or atom aggregates, reside in the omni-present hydrocarbon surface contamination; they do not form continuous films, but clusters ...
متن کاملAssessment of antioxidant and antibacterial activities of Zinc Oxide nanoparticles, Graphene and Graphene decorated by Zinc Oxide nanoparticles
Zinc Oxide nanoparticles (ZnO-NPs) and graphene carbon material, due to lower drug resistance, can replace antibiotics, and by decorating of graphene with Zn-NPs, their properties can be greatly improved. The purpose of this study was to evaluate the antioxidant and antibacterial effects of ZnO-NPs biosynthesized using Crocus Sativus petal extract, graphene and graphene decorated by ZnO-NPs bio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. B, Condensed matter and materials physics
دوره 87 شماره
صفحات -
تاریخ انتشار 2013